腐蝕的危害性是十分普遍的,而且也是十分嚴重的。腐蝕會造成重大的直接或間接損失,會造成災難性重大事故,而且危及人身安全。因腐蝕而造成的生產(chǎn)設(shè)備和管道的跑、冒、滴、漏,會影響生產(chǎn)裝置的生產(chǎn)周期和設(shè)備壽命,增加生產(chǎn)成本,同時還會因有毒物質(zhì)的泄漏而污染環(huán)境,危及人類健康。 


一、根據(jù)腐蝕發(fā)生的機理分類 


根據(jù)腐蝕發(fā)生的機理,可將其分為化學腐蝕、電化學腐蝕和物理腐蝕三大類。 


1. 化學腐蝕(Chemical Corrosion) 


 化學腐蝕是指金屬表面與非電解質(zhì)直接發(fā)生純化學作用而引起的破壞。金屬在高溫氣體中的硫腐蝕、金屬的高溫氧化均屬于化學腐蝕。 


2. 電化學腐蝕(Electrochemical Corrosion)


 電化學腐蝕是指金屬表面與離子導電的介質(zhì)發(fā)生電化學反應而引起的破壞。電化學腐蝕是最普遍、最常見的腐蝕,如金屬在大氣、海水、土壤和各種電解質(zhì)溶液中的腐蝕都屬此類。 


3. 物理腐蝕(Physical Corrosion) 


 物理腐蝕是指金屬由于單純的物理溶解而引起的破壞。其特點是:當?shù)腿埸c的金屬溶入金屬材料中時,會對金屬材料產(chǎn)生“割裂”作用。由于低熔點的金屬強度一般較低,在受力狀態(tài)下它將優(yōu)先斷裂,從而成為金屬材料的裂紋源。應該說,這種腐蝕在工程中并不多見。 



二、根據(jù)腐蝕形態(tài)分類 


 按腐蝕形態(tài)分類,可分為全面腐蝕、局部腐蝕和應力腐蝕三大類。 


1. 全面腐蝕(General Corrosion) 


  全面腐蝕也稱均勻腐蝕,是在管道較大面積上產(chǎn)生的程度基本相同的腐蝕。均勻腐蝕是危險性最小的一種腐蝕。 


 ①. 工程中往往是給出足夠的腐蝕余量就能保證材料的機械強度和使用壽命。 


 ②. 均勻腐蝕常用單位時間內(nèi)腐蝕介質(zhì)對金屬材料的腐蝕深度或金屬構(gòu)件的壁厚減薄量(稱為腐蝕速率)來評定。SH3059標準中規(guī)定:腐蝕速率不超過0.05mm/a的材料為充分耐腐蝕材料;腐蝕速率為0.05~0.1mm/a的材料為耐腐蝕材料;腐蝕速率為0.1~0.5mm/a的材料為尚耐腐蝕材料;腐蝕速率超過0.5mm/a的材料為不耐腐蝕材料。 


 2. 局部腐蝕(Local Corrosion) 


 局部腐蝕又稱非均勻腐蝕,其危害性遠比均勻腐蝕大,因為均勻腐蝕容易被發(fā)覺,容易設(shè)防,而局部腐蝕則難以預測和預防,往往在沒有先兆的情況下,使金屬構(gòu)件突然發(fā)生破壞,從而造成重大火災或人身傷亡事故。局部腐蝕很普遍,據(jù)統(tǒng)計,均勻腐蝕占整個腐蝕中的17.8%,而局部腐蝕則占80%左右。 


 a. 點蝕(Pitting) 


  ①. 集中在全局表面?zhèn)€別小點上的深度較大的腐蝕稱為點蝕,也稱孔蝕。蝕孔直徑等于或小于深度。蝕孔形態(tài)如圖1所示。


圖1.jpg


 圖1 點蝕孔的各種剖面形狀(選自ASTM標準)

 

  ②. 點蝕是不銹鋼管道最具有破壞性的隱藏的腐蝕形態(tài)之一。奧氏體不銹鋼管道在輸送含氯離子或溴離子的介質(zhì)時最容易產(chǎn)生點蝕。不銹鋼管道外壁如果常被海水或天然水潤濕,也會產(chǎn)生點蝕,這是因為海水或天然水中含有一定的氯離子。 


  ③. 不銹鋼的點蝕過程可分為蝕孔的形成和蝕孔的發(fā)展兩個階段。 鈍化膜的不完整部位(露頭位錯、表面缺陷等)作為點蝕源,在某一段時間內(nèi)呈活性狀態(tài),電位變負,與其鄰近表面之間形成微電池,并且具有大陰極小陽極面積比,使點蝕源部位金屬迅速溶解,蝕孔開始形成。 已形成的蝕孔隨著腐蝕的繼續(xù)進行。小孔內(nèi)積累了過量的正電荷,引起外部 Cl- 的遷入以保持電中性,繼之孔內(nèi)氯化物濃度增高。由于氯化物水解使孔內(nèi)溶液酸化,又進一步加速孔內(nèi)陽極的溶解。這種自催化作用的結(jié)果,使蝕孔不斷地向深處發(fā)展,如圖2所示。


圖2.jpg


 ④. 溶液滯留容易產(chǎn)生點蝕;增加流速會降低點蝕傾向,敏化處理及冷加工會增加不銹鋼點蝕的傾向;固溶處理能提高不銹鋼耐點蝕的能力。鈦的耐點蝕能力高于奧氏體不銹鋼。 


 ⑤. 碳鋼管道也發(fā)生點蝕,通常是在蒸汽系統(tǒng)(特別是低壓蒸汽)和熱水系統(tǒng),遭受溶解氧的腐蝕,溫度在80~250℃間最為嚴重。雖然蒸汽系統(tǒng)是除氧的,但由于操作控制不嚴格,很難保證溶解氧量不超標,因此溶解氧造成碳鋼管道產(chǎn)生點蝕的情況經(jīng)常會發(fā)生。 


 b. 縫隙腐蝕(Crevice Corrosion) 


 當管道輸送的物料為電解質(zhì)溶液時,在管道內(nèi)表面的縫隙處,如法蘭墊片處、單面焊未焊透處等,均會產(chǎn)生縫隙腐蝕。一些鈍性金屬如不銹鋼、鋁、鈦等,容易產(chǎn)生縫隙腐蝕。 縫隙腐蝕的機理,一般認為是濃差腐蝕電池的原理,即由于縫隙內(nèi)和周圍溶液之間氧濃度或金屬離子濃度存在差異造成的??p隙腐蝕在許多介質(zhì)中發(fā)生,但以含氯化物的溶液中最嚴重,其機理不僅是氧濃差電池的作用,還有像點蝕那樣的自催化作用,如圖3所示。


圖3.jpg


 圖3 縫隙腐蝕的機理 


 c. 焊接接頭的腐蝕 


  通常發(fā)生于不銹鋼管道,有三種腐蝕形式。

 

 ①. 焊肉被腐蝕成海綿狀,這是奧氏體不銹鋼發(fā)生的δ鐵素體選擇性腐蝕


  為改善焊接性能,奧氏體不銹鋼通常要求焊縫含有3%~10%的鐵素體組織,但在某些強腐蝕性介質(zhì)中則會發(fā)生δ鐵素體選擇性腐蝕,即腐蝕只發(fā)生在δ鐵素體相(或進一步分解為σ相),結(jié)果呈海綿狀。 


 ②. 熱影響區(qū)腐蝕


  造成這種腐蝕的原因,是焊接過程中這里的溫度正好處在敏化區(qū),有充分的時間析出碳化物,從而產(chǎn)生了晶間腐蝕。 晶間腐蝕是腐蝕局限在晶界和晶界附近而晶粒本身腐蝕比較小的一種腐蝕形態(tài),其結(jié)果將造成晶粒脫落或使材料機械強度降低。 晶間腐蝕的機理是“貧鉻理論”。不銹鋼因含鉻而有很高的耐蝕性,其含鉻量必須要超過12%,否則其耐蝕性能和普通碳鋼差不多。不銹鋼在敏化溫度范圍內(nèi)(450~850℃),奧氏體中過飽和固溶的碳將和鉻化合成 Cr23C6 ,沿晶界沉淀析出。 由于奧氏體中鉻的擴散速度比碳慢,這樣,生成 Cr23C6 所需的鉛必然從晶界附近獲取,從而造成晶界附近區(qū)域貧鉻。如果含鉻量降到12%(鈍化所需極限含鉻量)以下,則貧鉻區(qū)處于活化狀態(tài),作為陽極,它和晶粒之間構(gòu)成腐蝕原電池,貧鉻區(qū)陽極面積小,晶粒陰極面積大,從而造成晶界附近貧鉻區(qū)的嚴重腐蝕。


 ③. 熔合線處的刀口腐蝕


  一般發(fā)生在用Nb及Ti穩(wěn)定的不銹鋼(347不銹鋼321不銹鋼)。


  刀口腐蝕大多發(fā)生在氧化性介質(zhì)中。刀口腐蝕示意如圖4所示。 


圖4.jpg


  d.  磨損腐蝕 


  也稱沖刷腐蝕。當腐蝕性流體在彎頭、三通等拐彎部位突然改變方向,它對金屬及金屬表面的鈍化膜或腐蝕產(chǎn)物層產(chǎn)生機械沖刷破壞作用,同時又對不斷露出的金屬新鮮表面發(fā)生激烈的電化學腐蝕,從而造成比其他部位更為嚴重的腐蝕損傷。 這種損傷是金屬以其離子或腐蝕產(chǎn)物從金屬表面脫離,而不是像純粹的機械磨損那樣以固體金屬粉末脫落。 如果流體中夾有氣泡或固體懸浮物時,則最易發(fā)生磨損腐蝕。不銹鋼的鈍化膜耐磨損腐蝕性能較差,鈦則較好。蒸汽系統(tǒng)、H2S-H2O系統(tǒng)對碳鋼管道彎頭、三通的磨損腐蝕均較嚴重。


  e. 冷凝液腐蝕 


   對于含水蒸氣的熱腐蝕性氣體管道,在保溫層中止處或破損處的內(nèi)壁,由于局部溫度降至露點以下,將發(fā)生冷凝現(xiàn)象,從而造成冷凝液腐蝕,即露點腐蝕。 


 f. 涂層破損處的局部大氣銹蝕 


  對于化工廠的碳鋼管線,這種腐蝕有時會很嚴重,因為化工廠區(qū)的大氣中常常含有酸性氣體,比自然大氣的腐蝕性強得多。 


3. 應力腐蝕(Stress Corrosion) 


  金屬材料在拉應力和特定腐蝕介質(zhì)的共同作用下發(fā)生的斷裂破壞,稱為應力腐蝕破裂。發(fā)生應力腐蝕破裂的時間有長有短,有經(jīng)過幾天就開裂的,也有經(jīng)過數(shù)年才開裂的,這說明應力腐蝕破裂通常有一個或長或短的孕育期。 應力腐蝕裂紋呈枯樹枝狀,大體上沿著垂直于拉應力的方向發(fā)展。裂紋的微觀形態(tài)有穿晶型、晶間型(沿晶型)和兩者兼有的混合型。 應力的來源,對于管道來說,焊接、冷加工及安裝時殘余應力是主要的。 并不是任何的金屬與介質(zhì)的共同作用都引起應力腐蝕破裂。其中金屬材料只有在某些特定的腐蝕環(huán)境中,才發(fā)生應力腐蝕破裂。表1列出了容易引起應力腐蝕開裂的管道金屬材料和腐蝕環(huán)境的組合。 


1.jpg


 表1 易產(chǎn)生應力腐蝕開裂的金屬材料和腐蝕環(huán)境組合(選自SH 3059附錄E) 


  a. 堿脆 


  金屬在堿液中的應力腐蝕破裂稱堿脆。碳鋼、低合金鋼、不銹鋼等多種金屬材料皆可發(fā)生堿脆。碳鋼(含低合金鋼)發(fā)生堿脆的趨勢如圖5所示。


圖5.jpg


 圖5 碳鋼在堿液中的應力腐蝕破裂區(qū) 


 由圖5可知,氫氧化鈉濃度在5%以上的全部濃度范圍內(nèi)碳鋼幾乎都可能產(chǎn)生堿脆,堿脆的最低溫度為50℃,所需堿液的濃度為40%~50%,以沸點附近的高溫區(qū)最易發(fā)生, 裂紋呈晶間型。


  奧氏體不銹鋼發(fā)生堿脆的趨勢如圖6所示。氫氧化鈉濃度在0.1%以上的濃度時18-8型奧氏體不銹鋼即可發(fā)生堿脆。以氫氧化鈉濃度40%最危險,這時發(fā)生堿脆的溫度為115℃左右。 超低碳不銹鋼的堿脆裂紋為穿晶型,含碳量高時,堿脆裂紋則為晶間型或混合型。當奧氏體不銹鋼中加入2%鉬時,則可使其堿脆界限縮小,并向堿的高濃度區(qū)域移動。鎳和鎳基合金具有較高的耐應力腐蝕的性能,它的堿脆范圍變得狹窄,而且位于高溫濃堿區(qū)。 


圖6.jpg


  圖6 產(chǎn)生應力腐蝕破裂的燒堿濃度與溫度關(guān)系 注:曲線上部為危險區(qū) 


  b. 不銹鋼的氯離子應力腐蝕破裂 


  氯離子不但能引起不銹鋼孔蝕,更能引起不銹鋼的應力腐蝕破裂。 發(fā)生應力腐蝕破裂的臨界氯離子濃度隨溫度的上升而減小,高溫下,氯離子濃度只要達到 10-6 ,即能引起破裂。發(fā)生氯離子應力腐蝕破裂的臨界溫度為70℃。 具有氯離子濃縮的條件(反復蒸干、潤濕)是最易發(fā)生破裂的。工業(yè)中發(fā)生不銹鋼氯離子應力腐蝕破裂的情況相當普遍。 不銹鋼氯離子應力腐蝕破裂不僅僅發(fā)生在管道的內(nèi)壁,發(fā)生在管道外壁的事例也屢見不鮮,如圖7所示。


圖7.jpg


   圖7 不銹鋼管道應力腐蝕破裂 


   作為管外側(cè)的腐蝕因素,被認為是保溫材料的問題,對保溫材料進行分析的結(jié)果,被檢驗出含有約0.5%的氯離子。這個數(shù)值可認為是保溫材料中含有的雜質(zhì),或由于保溫層破損、浸入的雨水中帶入并經(jīng)過濃縮的結(jié)果。 


 c. 不銹鋼連多硫酸應力腐蝕破裂 


   以加氫脫硫裝置最為典型,不銹鋼連多硫酸的應力腐蝕破裂頗為引人關(guān)注。 管道在正常運行時,受硫化氫腐蝕,生成的硫化鐵,在停車檢修時,與空氣中的氧及水反應生成了連多硫酸。在Cr-Ni奧氏體不銹鋼管道的殘余應力較大的部位(焊縫熱影響區(qū)、彎管部位等)產(chǎn)生應力腐蝕裂紋。 


 d. 硫化物腐蝕破裂 


  ①. 金屬在同時含有硫化氫及水的介質(zhì)中發(fā)生的應力腐蝕破裂即為硫化物腐蝕破裂,簡稱硫裂。在天然氣、石油采集,加工煉制,石油化學及化肥等工業(yè)部門常常發(fā)生管道、閥門硫裂事故。發(fā)生硫裂所需的時間短則幾天,長則幾個月到幾年不等,但是未見超過十年發(fā)生硫裂的事例。 


  ②. 硫裂的裂紋較粗,分支較少,多為穿晶型,也有晶間型或混合型。發(fā)生硫裂所需的硫化氫濃度很低,只要略超過 10-6 ,甚至在小于 10-6 的濃度下也會發(fā)生。 


       碳鋼和低合金鋼在20~40℃溫度范圍內(nèi)對硫裂的敏感性最大,奧氏體不銹鋼的硫裂大多發(fā)生在高溫環(huán)境中。隨著溫度升高,奧氏體不銹鋼的硫裂敏感性增加。 在含硫化氫及水的介質(zhì)中,如果同時含醋酸,或者二氧化碳和氯化鈉,或磷化氫,或砷、硒、銻、碲的化合物或氯離子,則對鋼的硫裂起促進作用。


    對于奧氏體不銹鋼的硫裂,氯離子和氧起促進作用,304L不銹鋼316L不銹鋼對硫裂的敏感性有如下的關(guān)系:H2S+H2O<H2S+H2O+Cl- <H2S+H2O+ Cl- +O2 (硫裂的敏感性由弱到強)。 對于碳鋼和低合金鋼來說,淬火+回火的金相組織抗硫裂最好,未回火馬氏體組織最差。鋼抗硫裂性能依淬火+回火組織→正火+回火組織→正火組織→未回火馬氏體組織的順序遞降。 


   鋼的強度越高,越易發(fā)生硫裂。鋼的硬度越高,越易發(fā)生硫裂。在發(fā)生硫裂的事故中,焊縫特別是熔合線是最易發(fā)生破裂的部位,這是因為這里的硬度最高。 NACE對碳鋼焊縫的硬度進行了嚴格的規(guī)定:≤200HB。這是因為焊縫硬度的分布比母材復雜,所以對焊縫硬度的規(guī)定比母材嚴格。焊縫部位常發(fā)生破裂,一方面是由于焊接殘余應力的作用,另一方面是焊縫金屬、熔合線及熱影響區(qū)出現(xiàn)淬硬組織的結(jié)果。為防止硫裂,焊后進行有效的熱處理十分必要。 


  e. 氫損傷 


  氫滲透進入金屬內(nèi)部而造成金屬性能劣化稱為氫損傷,也稱氫破壞。


  氫損傷可分為四種不同類型:氫鼓泡、氫脆、脫碳和氫腐蝕。


  ①. 氫鼓泡及氫誘發(fā)階梯裂紋。


     主要發(fā)生在含濕硫化氫的介質(zhì)中。


    硫化氫在水中離解: 


  2.png


  鋼在硫化氫水溶液中發(fā)生電化學腐蝕: 


3.png


  由上述過程可以看出,鋼在這種環(huán)境中,不僅會由于陽極反應而發(fā)生一般腐蝕,而且由于S2-在金屬表面的吸附對氫原子復合氫分子有阻礙作用,從而促進氫原子向金屬內(nèi)滲透。 


  當氫原子向鋼中滲透擴散時,遇到了裂縫、分層、空隙、夾渣等缺陷,就聚集起來結(jié)合成氫分子造成體積膨脹,在鋼材內(nèi)部產(chǎn)生極大壓力(可達數(shù)百兆帕)。 如果這些缺陷在鋼材表面附近,則形成鼓泡,如圖8所示。如果這些缺陷在鋼的內(nèi)部深處,則形成誘發(fā)裂紋。它是沿軋制方向上產(chǎn)生的相互平行的裂紋,被短的橫向裂紋連接起來形成“階梯”。 氫誘發(fā)階梯裂紋輕者使鋼材脆化,重者會使有效壁厚減小到管道過載、泄漏甚至斷裂。


圖8.jpg


   氫鼓泡需要一個硫化氫臨界濃度值。有資料介紹,硫化氫分壓在138Pa時將產(chǎn)生氫鼓泡。如果在含濕硫化氫介質(zhì)中同時存在磷化氫、砷、碲的化合物及CN-時,則有利于氫向鋼中滲透,它們都是滲氫加速劑。 氫鼓泡及氫誘發(fā)階梯裂紋一般發(fā)生在鋼板卷制的管道上。


 ②. 氫脆


  無論以什么方式進入鋼內(nèi)的氫,都將引起鋼材脆化,即伸長率、斷面收縮率顯著下降,高強度鋼尤其嚴重。若將鋼材中的氫釋放出來(如加熱進行消氫處理),則鋼的力學性能仍可恢復。氫脆是可逆的。 H2S-H2O介質(zhì)常溫腐蝕碳鋼管道能滲氫,在高溫高壓臨氫環(huán)境下也能滲氫;在不加緩蝕劑或緩蝕劑不當?shù)乃嵯催^程能滲氫,在雨天焊接或在陰極保護過度時也會滲氫。 


 ③. 脫碳


  在工業(yè)制氫裝置中,高溫氫氣管道易產(chǎn)生碳損傷。鋼中的滲碳體在高溫下與氫氣作用生成甲烷:


4.png


  反應結(jié)果導致表面層的滲碳體減少,而碳便從鄰近的尚未反應的金屬層逐漸擴散到此反應區(qū),于是有一定厚度的金屬層因缺碳而變?yōu)殍F素體。脫碳的結(jié)果造成鋼的表面強度和疲勞極限的降低。 


 ④. 氫腐蝕


 鋼受到高溫高壓氫作用后,其力學性能劣化,強度、韌性明顯降低,并且是不可逆的,這種現(xiàn)象稱為氫腐蝕。 


  氫腐蝕的歷程可用圖9來解釋:


5.png


圖9.jpg


  圖9 氫腐蝕的歷程


6.png




  氫腐蝕的過程大致可分為三個階段:孕育期,鋼的性能沒有變化;性能迅速變化階段,迅速脫碳,裂紋快速擴展;最后階段,固溶體中碳已耗盡。


  氫腐蝕的孕育期是重要的,它往往決定了鋼的使用壽命。 


  某氫壓力下產(chǎn)生氫腐蝕有一起始溫度,它是衡量鋼材抗氫性能的指標。低于這個溫度氫腐蝕反應速度極慢,以至孕育期超過正常使用壽命。碳鋼的這一溫度大約在220℃左右。 


  氫分壓也有一個起始點(碳鋼大約在1.4MPa左右),即無論溫度多高,低于此分壓,只發(fā)生表面脫碳而不發(fā)生嚴重的氫腐蝕。 各種抗氫鋼發(fā)生腐蝕的溫度和壓力組合條件,就是著名的Nelson曲線(在很多管道器材選用標準規(guī)范內(nèi)均有此曲線圖,如SH3059《石油化工管道設(shè)計器材選用通則》)。 


  冷加工變形,提高了碳、氫的擴散能力,對腐蝕起加速作用。 


  某氮肥廠,氨合成塔出口至廢熱鍋爐的高壓管道,工作溫度320℃左右,工作壓力33MPa,工作介質(zhì)為H2、N2、NH3 混合氣,應按Nelson曲線選用抗氫鋼。其中有一異徑短管,由于錯用了普通碳鋼,使用不久便因氫腐蝕而破裂,造成惡性事故,損失非常慘重。